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Fast Marching Methods∗

J. A. Sethian†

Abstract. Fast Marching Methods are numerical schemes for computing solutions to the nonlin-
ear Eikonal equation and related static Hamilton–Jacobi equations. Based on entropy-
satisfying upwind schemes and fast sorting techniques, they yield consistent, accurate,
and highly efficient algorithms. They are optimal in the sense that the computational
complexity of the algorithms is O(N logN), where N is the total number of points in
the domain. The schemes are of use in a variety of applications, including problems
in shape offsetting, computing distances from complex curves and surfaces, shape-from-
shading, photolithographic development, computing first arrivals in seismic travel times,
construction of shortest geodesics on surfaces, optimal path planning around obstacles, and
visibility and reflection calculations. In this paper, we review the development of these
techniques, including the theoretical and numerical underpinnings; provide details of the
computational schemes, including higher order versions; and demonstrate the techniques
in a collection of different areas.
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1. Introduction to Fast Marching Methods. Fast Marching Methods are com-
putational techniques that approximate the solution to nonlinear Eikonal equations
of the form

|∇u(x)| = F (x) in Ω, F (x) > 0,(1)

u = g(x) on Γ,

where Ω is a domain in R2 or R3.1 Here, the right-hand side, F (x) > 0, is typically
supplied as known input to the equation, as is the boundary condition that u equal a
known function g(x) given along a prescribed curve or surface Γ in Ω.

Equation (1) is part of a broader class of Hamilton–Jacobi equations of the form

H(ux, uy, uz, x, y, z) = 0.(2)

In the case of the Eikonal equation, the function H reduces to H = |∇u(x)| − F (x).
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As discussed below, one of the main difficulties in solving these equations is
that the solution need not be differentiable, even with smooth boundary data. This
nondifferentiability is intimately connected to the notion of appropriate weak solu-
tions. Our goal is to devise numerical techniques that naturally account for this non-
differentiability by constructing accurate and efficient approximation schemes that
admit physically correct nonsmooth solutions. The main techniques we will use are
Fast Marching Methods, introduced in [27]. These consistent and highly efficient
techniques are based on two key components. First, by exploiting upwind “viscosity
schemes,” they automatically select solutions that include nondifferentiability in nat-
ural ways. Second, by coupling the causality of these schemes to fast sorting methods
borrowed from discrete network problems, they become extremely efficient compu-
tationally; the complexity of these algorithms is O(N logN), where N is the total
number of points in the domain Ω.

There is a large collection of applications that require the solution of the nonlinear
Eikonal equation. To begin, imagine the problem of accurately computing the distance
to a curve or surface. By letting the right-hand side F equal unity, the level curves
u = C of the Eikonal equation give the set of all points located a distance C from the
boundary curve; this can be seen by noting that the gradient |∇u| must be orthogonal
to these level curves, and that the gradient has length 1. Another way to state
this problem is to imagine a disturbance propagating with unit speed away from the
initial curve, and then to compute the “first arrival time” at each point in the domain
Ω. Points where the solution is nondifferentiable are locations where two points on
the boundary curve are the same distance away. Performing this same calculation
on surfaces and tracking backwards orthogonally to equiarrival curves allows one to
compute shortest paths on manifolds.

Extending the problem by changing the right-hand side to a nonconstant F corre-
sponds to computing the distance function in a nonuniform metric; here the “arrival
times” are slowed or sped up by the variation in F . Two examples include the cal-
culation of first arrivals in seismic travel times, in which the “slowness” function F
corresponds to the reciprocal of the velocity that varies depending on the type of rock,
and the development process in photolithography, in which the resistive strength of
a material is differentially altered through optical processes and the material is then
exposed to an etching beam that removes the weaker material.

More drastic alterations of the right-hand side (that is, setting F =∞ in certain
subsets of Ω) yield equations for optimal path navigation, in which an infinite value for
F corresponds to an impenetrable obstacle that must be circumnavigated. Extending
the dimension from pure physical space (from R2 or R3) to include rotational effects
allows one to include additional degrees of freedom generated by moving arms in the
navigation process.

The outline of this paper is as follows. We begin by discussing the ideas of weak
solutions and viscosity solutions, followed by numerical approximations and upwind
schemes. We then present the Fast Marching Method, first in orthogonal coordinate
systems, and then in a triangulated unstructured mesh setting. Here, we discuss in
some detail the connection of these techniques to both network path algorithms and
level set methods. After extending the Fast Marching Method to higher order, we
end with a collection of applications.

Before we start, we point out a slightly confusing issue that is at the heart of
the efficiency of Fast Marching Methods. The nonlinear Eikonal equation (1) and the
static Hamilton–Jacobi equation (2) are boundary value problems, but the notion of
“first arrival times” sounds more like an initial value problem, in which information
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Fig. 1 Distance function solution to Eikonal equation |∇u| = 1.

propagates outwards from the boundary/initial data. In fact, whereas the equations
are true boundary value problems, the success of Fast Marching Methods comes from
building numerical schemes that allow one to efficiently construct the solution outward
from the boundary data.

The majority of this review is taken from the original work on Fast Marching
Methods [27] and two recent books on the subject [30, 31]. We refer the inter-
ested reader to these resources for many computational schemes that can exploit
Fast Marching Methods, as well as many more applications and examples.

2. The Eikonal and Static Hamilton–Jacobi Equations.

2.1. Fundamental Equations and Nondifferentiability. We begin by returning
to the example of the simple Eikonal equation

|∇u| = F (x, y),

with F = 1. One of the subtleties of this equation is that the solution may be
nondifferentiable, even with smooth initial data. As a simple illustration, consider
the case of

|∇u| = 1 outside the unit circle, u = 0 on the unit circle.(3)

It is readily checked that the function u(x, y) =
(
x2 + y2

)1/2 − 1 corresponding to
the distance function from the unit circle solves the given Eikonal equation. Indeed,
specifying the right-hand side F (x) = 1 and providing zero as the boundary condition
implies that the solution is just the distance to the initial curve Γ. The solution is
shown as a family of concentric circles in Figure 1. It is, of course, easy to check that
the solution is everywhere differentiable.

In contrast, now consider boundary data given by a nonconvex curve, and suppose
we try to find the distance from any point in the domain to this curve. There are two
ways we can proceed.

First, suppose we put a particle at each point of the boundary curve and move
these particles away from the curve in a normal direction with unit speed. At any time
C, the position of these particles gives a set of all points a “distance” C away from
the boundary curve. Figure 2a illustrates this approach above a particular nonconvex
curve.

We note that this construction creates a curve that crosses itself. This “swal-
lowtail” solution is multivalued; some points are reached by normals emanating from
more than one point on the boundary.
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Points a “local distance” from the boundary data Globally closest points to boundary data
(a) (b)

Fig. 2 Possible solutions to Eikonal equation |∇u| = 1.

A different approach comes from drawing the set of all points located a given
distance away. One way to build this solution (shown on the right) is through a
Huygens principle construction. The solution is developed by imagining wavefronts
emanating with unit speed from each point of the boundary data. The envelope of
these wavefronts always corresponds to the “first arrivals” and automatically produces
the solution given in Figure 2b. We note that there will be a vertical ridge along which
two points on the boundary curve are the same distance away, as suggested in Figure
2b. Along this ridge, the solution is nondifferentiable and the gradient ∇u is not
defined.

Both of the above constructions can be thought of as solutions to the Eikonal
equation. However, the solution that we want, corresponding to the shortest distance
or “first arrival,” is the one obtained through the Huygens construction. Another way
to obtain this solution is through the notion of an entropy condition. As defined in [23]
and [24], we imagine the boundary curve as a source for a propagating flame, and the
expanding flame satisfies the requirement that once a point in the domain is ignited
by the expanding front, it stays burnt. This construction yields the entropy-satisfying
Huygens construction given in Figure 2b.

Yet another way to obtain this entropy-satisfying Huygens construction comes
from adding a smoothing term to the equation. Consider the associated “viscous”
partial differential equation given by

|∇u(x)| = F (x) + ε∇2u.(4)

It can be shown that the viscous term ε∇2u acts to smooth out sharp corners in the
solution and guarantees that the solution stays smooth in the entire domain Ω (see
[24, 30]). As ε goes to zero, the solution converges to the first arrival solution given
in Figure 2b.

Thus, our goal is to build numerical methods that automatically extract this
viscous limit. Before doing so, we note that the formal way of defining this viscous
limit is through the idea of viscosity solutions for time-dependent Hamilton–Jacobi
equations. Rather than define the solution as the viscous limit, one instead analyzes
the behavior of potential solutions when measured against possible test functions.
Crandall and Lions [8] have developed the theory of viscosity solutions for time-
dependent Hamilton–Jacobi equations. Briefly, following the definitions in [8], they
define a viscosity solution as follows.
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Definition. A function u is said to be a viscosity solution of (2) for all smooth
test functions v,

1. if u− v has a local maximum at a point (xo, to), then

vt(xo, to) +H(Dv(xo, to), xo) ≤ 0;(5)

2. if u− v has a local minimum at a point (xo, to), then

vt(xo, to) +H(Dv(xo, to), xo) ≥ 0.(6)

Note that nowhere in this definition is the viscosity solution u differentiated;
everything is done in terms of the test function v. This is done so that one can now
use the usual trick of integration by parts and move all the derivatives onto the test
function in exchange for some boundary conditions.

Using this definition, one can show that (i) if u is a smooth solution of the
Hamilton–Jacobi equation, then it is a viscosity solution, (ii) if a viscosity solution u
is differentiable at some point, then it satisfies the Hamilton–Jacobi equation at that
point, and (iii) the viscosity solution is unique, given appropriate initial conditions.
Finally, one then proves that the solution produced by taking the limit of the smooth
solutions uε as ε vanishes is indeed this viscosity solution.

We shall prove none of these statements here. Precise statements and proofs may
be found in [6, 8, 7]. The salient point is that for both time-dependent and static
(e.g., the Eikonal equation) Hamilton–Jacobi equations, the viscosity solution can be
defined in a way that does not require differentiation, and can be proven to be the
unique viscous limit of the smoothed Hamilton–Jacobi equation.

Our goal is to develop numerical approximations that correctly select this viscous
limit. As proposed in [25], the fact that the entropy condition is similar to the
one for hyperbolic conservation laws suggests the use of the numerical methodologies
associated with the hyperbolic equation.

2.2. Upwind Schemes and Numerical Approximations.

2.2.1. Upwind Schemes and Numerical Quadrature. As motivation for the use
of upwind schemes for approximating the gradient operator, consider the one-dimen-
sional Eikonal equation given by√

u2
x = F (x), u(0) = 0.

Here, the right-hand side F (x) > 0 is given, and the goal is to construct u(x) away
from the boundary condition that u(0) = 0. We note immediately that the solution
to this problem is not unique; if v(x) solves the problem, then so does −v(x). Hence,
we further restrict ourselves to nonnegative solutions u.

We can imagine building the solution “outwards” along the positive and negative
x-axis from the origin by solving each problem separately. We consider the ordinary
differential equations

du
dx = F (x), u(0) = 0, x ≥ 0,

du
dx = −F (x), u(0) = 0, x ≤ 0.

Since the right-hand side is only a function of x, we are essentially performing numer-
ical quadrature. Using the standard finite difference notion that ui ≈ u(i∆x), and
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Fi = F (i∆x), we can approximate each of these two solutions using Euler’s method,
namely,

ui+1−ui
∆x = Fi, i > 0,

ui−ui−1
∆x = −Fi, i ≤ 0,

where u0 = 0. These are upwind schemes: we are computing derivatives using points
“upwind” or towards the boundary condition. In other words, each ordinary differen-
tial equation is solved away from the boundary condition.

2.2.2. Upwind Schemes and Evolving Interfaces. Further motivation for ap-
proximating the gradient using upwind differences comes from the instructive example
of a curve evolving in time whose position can always be described as the graph of a
function. Consider an initial front given by the graph of g(x), with g and g′ periodic
on [0, 1], and suppose that the front (i) propagates with speed S in its normal direc-
tion and (ii) remains a function for all time. Let ψ be the height of the propagating
function at time t; thus ψ(x, 0) = g(x). One can show (see [25]) that the equation of
motion for the changing height is given by

ψt = S(1 + ψ2
x)1/2.(7)

As an example, with speed S = 1, consider the initial value problem

ψt = (1 + ψ2
x)1/2, ψ(x, 0) = g(x) =

{
1/2− x, x ≤ 1/2,
x− 1/2, x > 1/2.(8)

The initial front is a “V” formed by rays meeting at (1/2, 0). By the entropy condition
and Huygens principle construction, the solution at any time t is the set of all points
located a distance t from the initial V. Our goal is to show that the choice of numerical
approximations for the gradient term (1 + ψ2

x)1/2 has some subtlety.
One approach is to divide the interval [0, 1] into 2M − 1 points and to form the

central difference approximation to the spatial derivative ψx in (8), namely,

ψt ≈
ψn+1
i − ψni

∆t
=

[
1 +

[
ψni+1 − ψni−1

2∆x

]2
]1/2

= [1 + [D0x
i ψ]2]1/2,(9)

where in the last expression we have used standard notation for the central difference.
Since xM = 1/2, by symmetry we have that ψM+1 = ψM−1; thus the right-hand

side is 1. However, for all x 6= 1/2, ψt is correctly calculated to be
√

2, since the graph
is linear on either side of the corner, and thus the central difference approximation
is exact. Note that this has nothing to do with the size of the space step ∆x or the
time step ∆t. No matter how small we make the numerical parameters, as long as
we use an odd number of points, the approximation to ψt at x = 1/2 gets no better.
It is simply due to the way in which the derivative ψx is approximated. In Figure 3
we show results using this scheme, with the time derivative ψt replaced by a forward
difference scheme.

It is easy to see what has gone wrong. In the exact solution, ψt =
√

2 for all
x 6= 1/2. This should also hold at x = 1/2, where the slope is not defined; the
Huygens construction sets ψt (x = 1/2, t) equal to limx→1/2 ψt. Unfortunately, the
central difference approximation chooses a different (and, for our purpose, wrong)
limiting solution. It sets the undefined slope ψx equal to the average of the left and
right slopes. As the calculation progresses, this miscalculation of the slope propagates
outwards from the spike as wild oscillations. Eventually, these oscillations cause
blowup in the code. For details, see [30].
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Exact solution Central differences ∆t = .005 Central differences ∆t = .0005

Fig. 3 Central difference approximation to gradient.

(a) Exact solution (b) Scheme with 20 points (c) Scheme with 100 points

Fig. 4 Upwind, entropy-satisfying approximations to the gradient.

2.3. Schemes for Viscosity Solutions. Continuing with the example of an evolv-
ing interface, we now focus on the gradient term (1 + ψx

2). Consider now the finite
difference approximation introduced in [18], namely,

ψx
2 ≈ (max(D+x

i ψ, 0)2 + min(D−xi ψ, 0)2),(10)

where again we have used standard finite difference notation:

D−xi ψ =
ψi − ψi−1

h
, D+x

i ψ =
ψi+1 − ψi

h
.(11)

Here, ψi is the value of ψ on a grid at the point ih with grid spacing h.
Equation (10) is an upwind scheme (see [30]); it chooses grid points in the ap-

proximation in terms of the direction of the flow of information. If we consider our
propagating V curve from the example above, we see that a nonzero value is chosen at
the symmetric point. In Figure 4, we show what happens if we use the scheme given
in (10). The exact answer is shown, together with two simulations. The first uses
the entropy-satisfying scheme with only 20 points (Figure 4b), the second (Figure
4c) with 100 points. In the first approximation, the entropy condition is satisfied,
but the corner is somewhat smoothed due to the small number of points used. In
the more refined calculation, the corner remains sharp, and the exact solution is very
closely approximated. Thus we see that this scheme does a correct job of satisfying
the entropy condition.

It is relatively straightforward to prove that this numerical scheme converges to
the correct viscosity solution. Crandall and Lions [8] proved that consistent monotone
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schemes must converge to the correct viscosity solution; this result parallels similar
results for hyperbolic conservation laws (see, for example, [4, 15, 34]). Thus, we need
only check that this scheme satisfies the necessary requirements for convergence to
viscosity solutions. The operator is easily seen to be consistent, since it uses first-
order finite difference operators, and hence a Taylor series expansion of the error can
be shown to go to zero as the time and space steps are refined. Proving monotonicity
for the most basic first-order scheme is also straightforward and is done by simply
checking what happens to monotone data. One also can go back and check that the
central difference scheme given earlier does not satisfy these requirements. We refer
the interested reader to [8] and [31] for further comment about convergence and for
additional schemes.

While a vast array of other upwind, entropy-satisfying schemes are available to
approximate the gradient, for our purposes the above approximation (and one small
variation) will be sufficient; details on other schemes may be found in [28, 30].

2.4. Approximations to the Eikonal Equation. We can now construct appro-
priate schemes for the Eikonal equation

|∇u(x, y, z)| = F (x, y, z).(12)

Extending these ideas of upwind approximations for the gradient to multiple dimen-
sions, we have the scheme

|∇u| ≈

 max(D−xijku, 0)2 + min(D+x
ijku, 0)2

+ max(D−yijku, 0)2 + min(D+y
ijku, 0)2

+ max(D−zijku, 0)2 + min(D+z
ijku, 0)2

1/2

= Fijk.(13)

The forward and backward operators D−y, D+y, D−z, and D+z in the other coordi-
nate directions are similar to those defined earlier for the x direction.

A slightly different upwind scheme due to Godunov (see [20]), which will turn out
to be more convenient, is given by max(D−xijku,−D

+x
ijku, 0)2

+ max(D−yijku,−D
+y
ijku, 0)2

+ max(D−zijku,−D
+z
ijku, 0)2

1/2

= Fijk,(14)

where we use the same forward and backward operators D− and D+, and Fijk is the
slowness at the grid point ijk.

How might one solve (14)? One solution, given by Rouy and Tourin in [20], is
through iteration. Consider a stencil of a grid point and its six neighbors, as shown in
Figure 5. Observe that (14) is a piecewise quadratic equation for uijk, assuming that
the neighboring grid values for u are given. Thus, one solution comes from updating
the value of u at each grid point according to this quadratic until a solution is reached:

For iter=1,n;
For i, j, k=1,Mesh

Solve Quadratic for uiter+1
ijk , given

uiter
i−1,j,k, u

iter
i+1,j,k, u

iter
i,j−1,k, u

iter
i,j+1,k, u

iter
i,j,k−1, u

iter
i,j,k+1(15)

EndFor
EndFor

If we assume that there are N points in each direction and that it takes roughly N
steps to converge, then the operation count for this method is O(N4).
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Ui+1,j,k

i-1,j,k 
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Ui,j-1,k

Ui,j+1,k

i,j,k+1

i,j,k-1

i,j,kU

Fig. 5 Updating a grid point.

3. Fast Marching Methods. The key to Fast Marching Methods lies in the ob-
servation that the previous iteration contains a very specific causality relationship. In
this section, we describe the Fast Marching Method; for details, see [27, 28, 30].

3.1. Causality. The central idea behind the Fast Marching Method is to system-
atically construct the solution in a “downwind” fashion to produce the solution u. We
observe that the upwind difference structure of (14) means that information propa-
gates “one way,” that is, from smaller values of u to larger values. Hence, the Fast
Marching Algorithm rests on “solving” (14) by building the solution outwards from
the smallest u value. In fact, this strategy is behind our quadrature view of upwinding
described earlier; we can step the solution outwards from the boundary condition in
a downwind direction. The algorithm is made fast by confining the “building zone”
to a narrow band around the front; this approach is motivated by the narrow band
technology introduced by Chopp [3], used in recovering shapes in images by Malladi,
Sethian, and Vemuri [16], and analyzed extensively by Adalsteinsson and Sethian in
[1]. The idea is to sweep the front ahead in a downwind fashion by considering a set
of points in a narrow band around the existing front, and to march this narrow band
forward, freezing the values of existing points and bringing new ones into the narrow
band structure. The key is in the selection of which grid point in the narrow band to
update.

Consider a two-dimensional version of the Eikonal equation, in which the bound-
ary value is known at the origin; this is shown schematically in Figure 6. The black
sphere at u0,0 signifies a grid point where the value of u is known (in this case, the
initial value), and the light grey spheres are grid points where the solution value is
unknown.

We may start the algorithm by marching “downwind” from the known value,
computing new values at each of the four neighboring grid points, as shown in Figure
7. This provides possible values for u at each grid point u-1,0, u1,0, u0,-1, u0,1; these
values are shown as dark grey spheres in Figure 7.

Now, we would like to march downwind from these values given at the dark grey
spheres, but we do not know which one to choose. The answer lies in the observation
that the smallest u value at these dark grey spheres must be correct. Because of
upwinding, no point can be affected by grid points containing larger values of u.
Thus, we may freeze the value of u at this smallest dark grey sphere,2 and proceed
ahead with the algorithm; this is shown schematically in Figure 7.

2That is, we turn it into a black sphere and consider its value known.
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Fig. 6 Beginning of Fast Marching Method.

This algorithm works because the process of recomputing the u values at down-
wind neighboring points cannot yield a value smaller than any of the accepted points.
Thus, we can march the solution outwards, always selecting the narrow band grid
point with minimum trial value for u and readjusting downwind neighbors (see Fig-
ure 8).

Another way to look at this scheme is that each minimum trial value begins
an application of the Huygens principle, and the expanding wavefront touches and
updates all others. The speed of the algorithm comes from a heapsort technique to
efficiently locate the smallest element in the set Trial.

Thus, the Fast Marching Method is as follows: First, tag points in the initial
conditions as Alive. Then tag as Close all points one grid point away. Finally, tag as
Far all other grid points. Then the loop is as follows.

1. Begin Loop: let Trial be the point in Close with the smallest value of u.
2. Tag as Close all neighbors of Trial that are not Alive. If the neighbor is in
Far, remove it from that list and add it to the set Close.

3. Recompute the values of u at all Close neighbors of Trial by solving the
piecewise quadratic equation according to (14).

4. Add the point Trial to Alive; remove it from Close.
5. Return to top of Loop.

3.2. Heap Sorts and Computational Efficiency. The key to an efficient version
of the above technique lies in a fast way of locating the grid point in the narrow band
with the smallest value for u. An efficient scheme for doing this is discussed in detail
in [30]; here we follow that discussion.3

There are several ways to store the Trial elements so that one can easily find
the smallest element (see, for example, [5]). In our case, imagine that we have an
ordered structure of the elements in Trial. When a point is accepted, its neighbors
are updated, and their u values may change. Thus, only a small subset of the structure
must be reordered in order to regain the ordering.

3The work and contributions of Dr. Ravikanth Malladi were invaluable in the design of the initial
version of the Fast Marching Method.
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(a) Update “downwind” (b) Compute new possible values

A
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D
A
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D

(c) Choose smallest dark gray sphere (d) Freeze value at A, update
(for example, “A”) neighboring downwind points

A

B
C

D
A

B
C

D

(e) Choose smallest dark gray sphere (f) Freeze value at D,
(for example, “D”) update neighboring downwind points

Fig. 7 Update procedure for Fast Marching Method.

This leads quite naturally to a variation on a heap algorithm (see Sedgewick [22])
with back pointers to store the u values. Specifically, we use a min-heap data structure.
In an abstract sense, a min-heap is a “complete binary tree” with a property that the
value at any given node is less than or equal to the values at its children. In practice,
it is more efficient to represent a heap sequentially as an array by storing a node at
location k and its children at locations 2k and 2k+1. From this definition, the parent
of a given node at k is located at k/2. Therefore, the root that contains the smallest
element is stored at location k = 1 in the array. Finding the parent or children of a
given element are simple array accesses that take O(1) time.

The values of u are stored, together with the indices that give their location in the
grid structure. The marching algorithm works by first looking for the smallest element
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"FAR AWAY VALUES"

DOWNWIND SIDE

ACCEPTED VALUES

UPWIND SIDE

NARROW BAND OF TRIAL VALUES

Fig. 8 Upwind construction of accepted values.

in the NarrowBand; this FindSmallest operation involves deleting the root and one
sweep of DownHeap to ensure that the remaining elements satisfy the heap property.
The algorithm proceeds by tagging the neighboring points that are not Alive. The
FarAway neighbors are added to the heap using an Insert operation and values at
the remaining points are updated using (14). Insert works by increasing the heap size
by one and trickling the new element upward to its correct location using an UpHeap
operation. Last, to ensure that the updated u values do not violate the heap property,
we need to perform an UpHeap operation starting at that location and proceeding up
the tree.

The DownHeap and UpHeap operations (in the worst case) carry an element all the
way from root to bottom or vice versa. Therefore, this takes O(logN) time, assuming
there are N elements in the heap. It is important to note that the heap, which is
a complete binary tree, is always guaranteed to remain balanced. All that remains
is the operation of searching for the NarrowBand neighbors of the smallest element
in the heap. This can be done in time O(1) by maintaining back pointers from the
grid to the heap array. Without the back pointers, the search takes time O(N) in the
worst case. As an example, Figure 9 shows a typical heap structure and an UpHeap
operation after the element at location (2, 7) gets updated from 3.1 to 2.0.

Since the total work in changing the value of one element of the heap and bubbling
its value upwards is O(logM), where M is the size of the heap, this produces a total
operation count of M logM for the Fast Marching Method on a grid of M total points.
Thus, if we imagine a three-dimensional grid of N points in each direction, the Fast
Marching Method reduces the total operation count from N4 to N3 logN ; essentially,
each grid point is visited once to compute its arrival time value. For more details, see
[27, 28, 30, and 17].

4. Related Algorithms.

4.1. Network Path Algorithms. The Fast Marching Method is reminiscent of
Dijkstra’s algorithm [10] (see also [5, 22]), which is a method for finding the shortest
path on a network with prescribed weights between each link. As illustration, imagine
one is given a rectangular network with equal unit cost of entering each link (see
Figure 10).



FAST MARCHING METHODS 211

•
u = 0.6(i = 2, j = 8)

````````̀
         •u = 1.3(3, 5)

�
��•u = 2.0(4, 5)
�
�•
A
A•

@
@@•u = 3.0(4, 5)
�
�•
A
A•

•u = 2.3(6, 8)
�

��•u = 3.1(2, 7)�
�•
A
A•

@
@@•u = 2.9(3, 2)
�
�•
A
A•

Step 1: Change u value at (2,7)

•
u = 0.6(i = 2, j = 8)

````````̀
         •u = 1.3(3, 5)

�
��•u = 2.0(4, 5)
�
�•
A
A•

@
@@•u = 3.0(4, 5)
�
�•
A
A•

•u = 2.3(6, 8)
�

��•�
��

�
�•
A
A•

@
@@•u = 2.9(3, 2)
�
�•
A
A•

Step 2: New value at (2,7); UpHeap

•
u = 0.6(i = 2, j = 8)

````````̀
         •u = 1.3(3, 5)

�
��•u = 2.0(4, 5)
�
�•
A
A•

@
@@•u = 3.0(4, 5)
�
�•
A
A•

•u = 2.0(2, 7)
�

��•u = 2.3(6, 8)�
�•
A
A•

@
@@•u = 2.9(3, 2)
�
�•
A
A•

Heap property restored

Fig. 9 Heap structure and UpHeap+ operation.
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Network path

Fig. 10 Inconsistent vs. consistent algorithms.

Dijkstra’s method starts at the “START” point and expands outward, visiting
each node and keeping a running cost. The “front” is advanced by looking for the
node reached with the smallest current cost, and then advancing to neighbors. In
this sense, the method is similar to the Fast Marching Method; suitably programmed
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(a) Dijkstra’s method: (b) Fast Marching Method:
Multiple “shortest paths” Optimal diagonal path

Fig. 11 Inconsistent vs. consistent algorithms.

by means of a heap as described above, the method is an O(N logN) method of
computing the cost of going from point A to point B along the network.

However, if the two points are positioned relative to the network so that the op-
timal path is a straight-line diagonal between the two, such a graph search algorithm
cannot distinguish between the various Manhattan graphs of equal cost connecting
points A and B (see Figure 11a). The actual problem one wants to approximate
is the solution of the continuous problem, rather than the network solution. Thus,
such algorithms are said to be inconsistent with the underlying continuous problem;
refinement of the network will not produce a solution that converges to the correct
diagonal shortest path. While it is possible to rectify this problem by adding diagonal
links to the graph, the Fast Marching Method provides an approach that directly
approximates the solution of the underlying partial differential equation through con-
sistent numerical approximations, that is, one that selects the correct diagonal with
relatively few nodes shown in Figure 11b.

4.2. Optimal Orderings. A different way to look at the Fast Marching Method
is by returning to the iterative loop given in (15). The Fast Marching Method is a
reordering of the points so that the inner loop becomes a backsolve, and hence no
outer loop iteration is necessary. The price of computing the correct reordering, done
while the loop is in progress, is O(logN), which is what is required to reorder the
heap once values are updated.

4.3. Relation to Level Set Methods. A companion technique, which also grew
out of the work on the theory and numerics of curve/surface evolution developed
in [24], is known as the level set method and also requires the notions of entropy
conditions and viscosity solutions in order to produce stable and accurate numerical
schemes. Level set methods, described by Osher and Sethian [18], track the motion of
interfaces propagating under complex speed laws and share with Fast Marching Meth-
ods the ability to track fronts that change topology, break, and merge. They handle
more complex speed motions, including speeds that depend on local curvature, and
can track fronts that move forwards and backwards. However, they are considerably
more computationally expensive than Fast Marching Methods.

To delineate the differences between the two techniques, imagine a closed curve
Γ in the plane propagating normal to itself with speed F̄ . Furthermore, assume that
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Fig. 12 Transformation of front motion into boundary value problem.
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Fig. 13 Transformation of front motion into an initial value problem.

F̄ > 0, hence the front always moves “outwards.” One way to characterize the position
of this expanding front is to compute the arrival time T (x, y) of the front as it crosses
each point (x, y), as shown in Figure 12. Since the speed F̄ is inversely proportional
to the gradient, we must have

|∇T |F̄ = 1, T = 0 on Γ.(16)

Thus, the front motion is characterized as the solution to a boundary value prob-
lem; if the speed F̄ depends only on position, then the equation reduces to our familiar
Eikonal equation, with F̄ = 1/F .

Conversely, suppose we embed the initial position of the front as the zero level
set of a function φ in one higher dimension. The level set method identifies the
evolution of this level set function φ with the propagation of the front itself through
the time-dependent initial value problem

Φt + F̄ |∇Φ| = 0.(17)

This equation describes the time evolution of the level set function Φ in such
a way that the zero level set of this evolving function is always identified with the
propagating interface; see Figure 13.
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The most obvious distinction between the two views is that the initial value level
set formulation allows for both positive and negative speed functions F̄ ; the front
may move forwards and backwards as it evolves. The boundary value perspective
is restricted to fronts that always move in the same direction, because it requires a
single crossing time T at each grid point, and hence a point cannot be revisited.

Thus, we wish to solve the following problems:

Initial Value Formulation Boundary Value Formulation

φt + F̄ |∇φ| = 0, |∇T |F̄ = 1,
Front= Γ(t) = {(x, y)|φ(x, y, t) = 0}, Front= Γ(t) = {(x, y)|T (x, y) = t},

Applies for arbitrary F̄ . Requires F̄ > 0.

(18)

Recall that the Fast Marching Method is an efficient “adaptive” technique which
drops the computational labor involved in solving the boundary value formulation
from O(N4) to O(N3 logN), assuming N points in each direction of a three-dimen-
sional problem. Similarly, an efficient implementation of the level set method, intro-
duced in [1] and called the narrow band level set method, is available. The original
level set method given in [18] requires O(N4) work; here we assume roughly N time
steps for the front to propagate. In comparison, the narrow band method focuses all
the computational labor onto a thin band around the zero level set, thus reducing
the labor to O(N3k), where k is the width of this narrow band, providing an efficient
technique for implementing level set methods.4

Schematically, the history of the two methods and their adaptive versions is shown
in Figure 14

5. Extensions of Fast Marching Methods.

5.1. Higher-Accuracy Fast Marching Methods. As presented, the Fast March-
ing Method is a first-order scheme, owing to the use of a first-order approximation to
the gradient, namely, max(D−xijku,−D

+x
ijku, 0)2

+ max(D−yijku,−D
+y
ijku, 0)2

+ max(D−zijku,−D
+z
ijku, 0)2

1/2

= Fijk.(19)

We now discuss higher order Fast Marching Methods.
We begin by noting a slightly different implementation of the Fast Marching

Method.5 When values in Trial (which are the tentative values in the heap) are
being recomputed, use only Known values in the computation. Consider the second-
order backward approximation to the first derivative ux (see [9]), given by

ux ≈
3ui − 4ui−1 + ui−2

2∆x
,

4At first glance, the computational savings in the Fast Marching Method may not be evident
on the basis of these operation counts. However, two additional advantages provide the largest
computational savings. First, because the level set method is solving a time-dependent problem,
time step restrictions in terms of Courant–Friedrichs–Levy (CFL) conditions based on the speed F̄
determine the number of steps required to evolve a front; in contrast, the Fast Marching Method has
no such restriction. The speed F̄ of the front is irrelevant to the efficiency of the method. Second,
the number of elements in the heap depends on the length of the front; in most cases, this length is
small enough that, for all practical purposes, heap lookup is very fast.

5This variation was suggested by D. Adalsteinsson.
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Fig. 14 Evolution of theory and algorithms for interface propagations.

which may be compactly written as

ux ≈ D−xu+
∆x
2

(D−x)2u.

A similar expression holds for the forward difference, namely,

ux ≈ D+xu− ∆x
2

(D+x)2u.

Now consider the switch functions defined by (the expressions are similar in y and z)

switch−xijk =
[

1 if ui−2,j,k and ui−1,j,k are known and ui−2,j,k ≤ ui−1,j,k
0 otherwise

]
,

switch+x
ijk =

[
1 if ui+2,j,k and ui+1,j,k are known and ui+2,j,k ≤ ui+1,j,k
0 otherwise

]
.
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Grid L2 error L2 error L∞ error L∞ error
1st order 2nd order 1st order 2nd order

213 0.019790 0.007203 0.034042 0.012921

513 0.009409 0.002410 0.017063 0.004325

1013 0.004610 0.000461 0.008570 0.000734

1513 0.002289 0.000071 0.004325 0.000205

Fig. 15 First- and second-order computations of distance from origin..

We can then use these operators in the Fast Marching Method, namely,

max
[[
D−xijku+ switch−xijk

∆x
2 (D−xijk)2u

]
,−
[
D+x
ijku− switch+x

ijk
∆x
2 (D+x

ijk)2u
]
, 0
]2

+

max
[[
D−yijku+ switch−yijk

∆y
2 (D−yijk)2 u

]
,−
[
D+y
ijku− switch+y

ijk
∆y
2 (D+y

ijk)2u
]
, 0
]2

+

max
[[
D−zijku+ switch−zijk

∆z
2 (D−zijk)2 u

]
,−
[
D+z
ijku− switch+z

ijk
∆z
2 (D+z

ijk)2u
]
, 0
]2



1/2

= Fijk.
(20)

This scheme attempts to use a second-order one-sided upwind stencil whenever
points are available, but reverts to a first-order scheme in the other cases. We make
two observations. First, in order to start the scheme, we must use a higher order
scheme to produce accurate values in a band around the boundary values. Second, we
have chosen a very “conservative” higher order version of our Fast Marching Method;
it is possible to devise versions that invoke the first-order scheme less often.

5.1.1. Accuracy and Order of this Scheme. The question of whether the “second-
order” Fast Marching Method is really second-order depends on how often the switches
evaluate to zero and on how the number of those points where a first-order method
is invoked changes as the mesh is refined. In many simulations, the number of points
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Equidistant points from two points: Crude 21×21 grid
Solid = exact; short dashed/dotted = 1st order; long dashed = 2nd order.

Grid L2 error L2 error L∞ error L∞ error
1st order 2nd order 1st order 2nd order

213 0.0096 0.00500 0.0185 0.01047

413 0.0051 0.00119 0.0101 0.00230

813 0.0028 0.00028 0.0056 0.00055

1613 0.0014 0.00006 0.0028 0.00014

Fig. 16 First- and second-order computations of distance from two points.

where the first-order stencil must be chosen is relatively small, and the fraction of
such points among the total often decreases as the mesh is refined. In these cases, the
error is experimentally observed to be considerably reduced using this approach. The
advantages of using second-order operators wherever possible can be seen most clearly
along diagonals, where the first-order approximation to the gradient is significantly
worse than the second-order version. One can also use third- and higher order one-
sided differences; the degree to which these yield higher accuracy will again depend
on how often the first-order scheme is invoked.

5.1.2. Tests of Scheme. Next, we examine the accuracy of the Fast Marching
Method. The “second-order” scheme is defined as the one that uses second-order
one-sided operators whenever possible. Figure 15 shows sets of points equidistant
from the origin, computed using (i) the exact distance, (ii) the first-order scheme,
and (iii) the “second-order” scheme on an extremely crude 6 × 6 grid. As can be
seen, the “second-order” method is considerably better. Figure 15 also gives the error
associated with computing the distance function from a single point located at the
origin.

Next, we repeat this test, but use the Fast Marching Method to compute the
distance from two points, one located at (0.5, 0.25) and the other at (0.5, 0.75). Here,
the solution is nondifferentiable, and the viscosity solution is chosen. Once again, the
“second-order” method is considerably more accurate. Figure 16 shows a calculation
on a rough 21×21 grid; the table shows the error under mesh refinement.
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Equidistant points from two points: Crude 21×21 grid
Solid = exact; short dashed/dotted = 1st order; long dashed = 2nd order.

Grid L2 error L2 error L∞ error L∞ error
1st order 2nd order 1st order 2nd order

213 .01410 .005329 .02534 .013800

413 .00646 .001832 .01228 .005449

813 .00311 .000409 .00607 .002538

1613 .0015 .000113 .00303 .001346

Fig. 17 First- and second-order computations of distance from two points.

Finally, we repeat this test using a grid rotation and compute the distance from
two points, one located at (0.25, 0.75) and the other at (0.75, 0.25). The L2 error
is still second-order convergent for the second-order scheme, whereas the L∞ error
is first-order. This is to be expected: first-order error occurs along the shock lines,
which, due to the grid alignment, occur between grid points. Figure 17 shows a
calculation on a rough 21×21 grid; the table shows the error under mesh refinement.

5.2. Nonuniform Orthogonal Grids. The implementation of Fast Marching
Methods on nonuniform orthogonal meshes is straightforward. Nonuniform Cartesian
meshes are handled by the difference operators. Cylindrical and spherical coordinate
meshes require the standard altered expressions for the gradient in the upwind di-
rections. Since the use of these altered expressions does not affect the flow of the
Fast Marching Method, the actual algorithm remains unchanged. Only the update
formula is changed.

5.3. Triangulated Unstructured Mesh Formulation. There are a variety of rea-
sons to develop a Fast Marching Method for triangulated domains. First, triangulated
grids may be constructed to fit material or fluid boundaries. For example, problems in
photolithographic development in nonrectangular regions can require a triangulated
meshing so that the nonetchable material boundaries are accurately represented. Sec-
ond, surfaces are often described by triangulated patches, and hence this discretization
is natural. In [13], a Fast Marching Method on triangulated unstructured meshes was
introduced, using the unstructured mesh methodology for level set methods devel-
oped by Barth and Sethian [2], and applied to the problem of constructing geodesic
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Fig. 19 Simple triangulation for building a monotone update operator.

shortest paths on manifolds. Various examples were given there, and we follow that
work closely in this presentation. For further details, see [13].

5.3.1. The Update Procedure. As an introduction, recall the update procedure
in the Fast Marching Method for readjusting the values of neighbors that are down-
wind to known points. Our goal is to solve the Eikonal equation |∇T | = F . This
is the procedure by which new trial values are created for T in the heap of nearby
points. Imagine a uniform square grid and suppose that the goal is to update the
value of T at the center point (i, j). We label the values of u at the surrounding grid
points TA = Ti−1,j , TB = Ti+1,j , TC = Ti,j−1, and TD = Ti,j+1 (see Figure 18). Some
of the values may be infinite, corresponding to Far values.

Standing at the center point, the Fast Marching Method attempts to solve the
quadratic equation given by each quadrant. For example, we refer to possible con-
tributors A and C. Without loss of generality, there are two cases:

1. If only TA is known, then we find the solution TA < T to the “quadratic”
equation

(T − TA)2 = h2F 2
ij ,

where h is the uniform grid spacing.
2. If TA and TC are known, then we take the real solution to the quadratic

equation

(T − TA)2 + (T − TC)2 = h2F 2
ij .

For each possible up–down or left–right pair, we construct all possible real solutions;
we then accept as the updated point the one that produces the smallest value of T .
This is the Fast Marching Method described in [27] and [28].

5.3.2. A Scheme for a Particular Triangulated Domain. We now extend this
method to triangular domains. In order to do so, we shall build a monotone update
procedure on the triangulated mesh. As motivation, we consider the obvious trian-
gulation of a square grid in the plane. Imagine the triangulation given in Figure 19.
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T

Fig. 20 Acute triangulation around center grid point.

If we consider the known values TA and TC , and look at the triangle formed by
the points that hold TA, TC , and T , we can easily write down the equation of the
plane determined by the known values TA and TC , as well as the unknown value T ,
namely (with h as the side length),[

T − TA
h

]
x+

[
T − TC

h

]
y + T = z.

Computing the gradient, we then want to select a value of T such that[
T − TA

h

]2

+
[
T − TC

h

]2

= F 2
ij .

In other words, we are lifting the plane by a value T at the center point i, j in order
to have a gradient magnitude equal to 1/F . We note that this is the exact same
construction as the one produced by the “orthogonal” construction. Note also that in
this case the gradient vector, with origin at the center point, always points into the
triangle from which it is updated. This is not necessarily the case for an arbitrary
acute triangle. In order to establish monotonicity we will need to verify this condition.

The inability to solve this quadratic corresponds to an inability to tilt at an
appropriate angle, and the requirement that the solution T be greater than the con-
tributors means that the solution is always constructed in an upwind manner. Using
the same update rules as before, and the heap structure to maintain a list of Trial
points, this provides a method for executing the Fast Marching Method on this simple
triangulation.

5.3.3. Fast Marching Methods on Triangulated Domains. Following the con-
struction of unstructured mesh upwind approximations to the gradient [2], we now
extend this idea to an arbitrary triangulation.

Acute Triangulations. We start with an acute triangulation and consider the
triangulation around the grid point given in Figure 20. A large number of triangles
may share the center vertex. Our procedure, motivated by the simple triangulation
in the previous section, is to compute a possible value for T from each triangle that
includes the center point as a vertex. Since several triangles can produce admissible
values for T , we must select an appropriate value. There are several possibilities. We
chose the one that produces the smallest new value for T ; this will correspond to an
algorithm similar to the one used on the triangular mesh. More elaborate upwind
constructions on triangulated meshes are given in [2].

Consider the nonobtuse triangle ABC in which the point to update is C. Assume
that T (B) > T (A). We first verify that the update is from within the triangle; i.e.,
the altitude h should be inside the nonobtuse triangle CBD (see Figure 21). This
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Fig. 21 Given the triangle ABC, such that u = u(B) − u(A), find u(C) = u(A) + t such that
(t − u)/h = F . Left: A perspective view of the triangle stencil supporting the u() values
that form a lifted plane with a gradient magnitude equal to F . Right: The trigonometry on
the plane defined by the triangle stencil.

means that we search for t = EC such that

t− u
h

= F.

Denote a = BC and b = AC; we have, by similarity, that t/b = DF/AD = u/AD,
thus CD = b − AD = b − bu/t = b(t − u)/u. Next, by the law of cosines, BD2 =
a2 + CD2 − 2aCD cos θ, and by the law of sines, sinφ = CD

BD sin θ. Now, using the
right angle triangle CBG, we have

h = a sinφ = a
CD

BD
sin θ =

aCD sin θ√
a2 + CD2 − 2a CD cos θ

.

This yields a quadratic equation for t:

(a2 + b2 − 2ab cos θ)t2 + 2bu(a cos θ − b)t+ b2(u2 − F 2a2 sin2 θ) = 0.

The solution t must satisfy u < t and should be updated from within the triangle,
namely,

a cos θ <
b(t− u)

t
<

a

cos θ
.(21)

Thus, the update procedure is given as follows:

If u < t and a cos θ < b(t−u)
t < a

cos θ ,

then T (C) = min{T (C), t+ T (A)};

else T (C) = min{T (C), bF + T (A), cF + T (B)}.

This is the scheme to extend the Fast Marching Method to acute triangulated
domains given in [13].

Extension to General Triangulations. So far we have required an acute triangu-
lation. This is so that any front entering the side of a triangle will have two points
to provide values before the third is computed. In other words, for monotonicity, we
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Fig. 22 Upper left: A triangulated surface patch. Bottom: The initialization of the construction for
the splitting section. Upper right: The unfolded patch and the splitting section expansion
up to the first vertex B, and the virtual edge connecting the two vertices AB.

restrict the update to come from within the triangle; i.e., the gradient of the solution
at a grid point should point into the triangle from which it is updated. The most
straightforward way to enforce this requirement is to build a nonobtuse triangulation,
thus making sure that the grid captures all incoming fronts.

One approach to handling nonacute triangulations, which we now describe, is to
build numerical support locally at obtuse angles by splitting these angles in a special
way. An obtuse angle at vertex A can be updated by its neighboring points in a
consistent way only at a limited section of upcoming fronts. Connecting the vertex
to any point in this section splits the obtuse angle into two acute ones.

The difficulty with this approach is that we need to reach back and use more tri-
angles than simply the one containing the point to be updated. These other triangles
might not be coplanar, since the unstructured mesh may lie on a convoluted surface.
The idea is to extend this section by recursively unfolding the adjacent triangle(s),
until a new vertex B is included in the extended section. Then the vertices are con-
nected by a virtual directional edge from B to A (i.e., A may be updated by B). The
length of the edge AB is equal to the distance between A and B on the unfolded
triangle(s) plane (see Figure 22).

Finally, we note that a complexity analysis for this unfolding procedure given in
[13] shows that the O(N logN) operation count is maintained. We refer the interested
reader there for further details. Further discussion of triangulated Fast Marching
Methods, higher order versions, and extensions to the basic techniques may be found
in [33].

6. Applications. In this section, we provide a collection of examples to demon-
strate the applicability of Fast Marching Methods.
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Fig. 23 Shape offsetting of spiral.

6.1. Shape Offsetting. The first example, borrowed from [30], is the straightfor-
ward problem of shape offsetting. Given a closed shape in two or three dimensions,
one wants to compute the offset, obtained by propagating the boundary in its normal
direction with constant unit speed. All that is required is to compute the distance to
the boundary and to plot the level curves.

Here, we work directly with the Eikonal equation. Since the speed is F = 1, we
must then solve

|∇T | = 1,(22)

where the boundary condition is T = 0 on and inside the given shape. In Figure 23,
the boundary is represented as a dark heavy line, and we show the larger shape-offsets,
obtained using the Fast Marching Method.

6.2. Photolithographic Development. One aspect of the manufacturing of mi-
crochips is the process of lithographic development. In this process, the resist prop-
erties of a material are altered through exposure to a beam that has been partially
blocked by a pattern mask. The material is then “developed,” which means the ma-
terial with less resistivity is etched away. The development process reduces to that of
following an interface propagating downwards in three dimensions, where the speed
in the normal direction is given as a supplied rate function at each point. The speed
F = F (x, y, z) depends only on position; however, it may change extremely rapidly.
The goal in lithographic development is to track this evolving front. In order to
develop realistic structures in three-dimensional development profiles, a grid of size
300 × 300 × 100 is not unreasonable; hence a fast algorithm is of considerable value
in the development step.

As illustration (see [30]), a rate function calculated using the three-dimensional
exposure and postexposure bake modules of TMA’s Depict 4.0 [36] is coupled to the
Fast Marching Method. Figure 24a shows the top view of a mask placed on the



224 J. A. SETHIAN

(a) Masking pattern

(b) Lithographic development: View from below

Fig. 24 Lithographic development using Fast Marching Method.

board; the dark areas correspond to areas that are exposed to light. The presence of
such factors as standing waves in the etching profile depends on issues such as the
reflectivity of the surface. In Figure 24b, a view of the developed profile is shown
from underneath; the etching of the holes and the presence of standing waves can be
seen easily. For further results, see [29].

6.3. Seismic Travel Times. Next, we apply Fast Marching Methods to problems
involving the imaging of geophysical data sets. In [32], Sethian and Popovici used the
Fast Marching Method to rapidly construct first arrival times in seismic analysis, and
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then coupled this work to prestack migration. Here, we summarize that work. For
further details, see [32].

Three-dimensional prestack migration of surface seismic data is used to image the
earth’s subsurface when complex geological structures and velocity fields are present.
The most commonly used imaging techniques applied to three-dimensional prestack
surveys are methods based on the Kirchhoff integral, because of its flexibility in imag-
ing irregularly sampled data and its relative computational efficiency. To perform
Kirchhoff migration, one approximately solves the wave equation with a boundary
integral method. The reflectivity at every point of the earth’s interior is computed by
summing the recorded data on multidimensional surfaces; the shapes of the summa-
tion surfaces and the summation weights are computed from the Green’s functions of
the single scattering wave-propagation experiment (see, for example, [21]).

6.3.1. Background Equations. In more detail, the essence of three-dimensional
prestack migration (see, for example, [19]) is expressed by the following integral equa-
tion:

Image(x) =
∫ ∫

xs

∫
xr

G(xs,x, ω)G(x,xr, ω)Data(xs,xr, ω)dxrdxsdω,

where x is the image output location, xs and xr are the data source and receiver coor-
dinates, and ω is angular frequency. The Green’s functions G(xs,x, ω) and G(x,xr, ω)
parameterize propagation from source to image point and from image point to receiver,
respectively. In most implementations, the calculation is often done instead in the
time domain, and can be expressed as the summation

Image(x) =
∑
xs

∑
xr

AsArInput(xs,xr, ts + tr),

where Input is a filtered version of the input data, and the Green’s functions are
parameterized by the amplitudes As and Ar and travel times ts and tr.

For three-dimensional prestack Kirchhoff depth migration, the Green’s func-
tions are represented by five-dimensional tables; these tables are functions of the
source/receiver surface locations (x, y) and of the reflector position (x, y, z) in the
earth’s interior. This Green’s function parameterization is usually based on the as-
sumption of acoustic propagation. This Kirchhoff prestack migration process consists
of two stages. First, travel time tables are computed and stored. Second, the migrated
image is formed by convolving the prestack data with migration operators derived from
the travel time tables. Both phases present challenges from the perspective of both
the geophysical accuracy and the computer implementation.

The key element of three-dimensional prestack Kirchhoff depth migration is the
calculation of travel time tables used to parameterize the asymptotic Green’s func-
tions. An efficient travel time calculation method is required to generate the five-
dimensional travel time tables needed for three-dimensional Kirchhoff migration.6

Also, since depth migration problems are generally applied in areas of complex ve-
locity structure, the travel time calculation method must be robust. Computing
three-dimensional Green’s function tables over a 100× 100 kilometer area (about 430
marine blocks), with sources positioned every 200 meters, requires 1 terabyte of travel
time volumes. Thus, speed is an important issue. Finite difference approximations

6The Green’s function can be reconstructed from travel time tables that describe travel times
from all surface points (x, y) to all subsurface locations (x, y, z); thus the tables are five-dimensional.
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Fig. 25 Velocity model and and migrated image.

Fig. 26 Velocity model and migrated image.

to travel time computations include the work of Vidale [38] and van Trier and Symes
[37]. Because of their speed and robustness and the fact that they are unconditionally
stable, Fast Marching Methods offer attractive methods of computing travel times.

6.3.2. Migration Using the Fast Marching Method. Figures 25 and 26 show
slices through the three-dimensional velocity and corresponding structural images ob-
tained from migration on prestack data obtained from a given data set. The left side
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Fig. 27 Computing minimal weighted geodesics on triangulated surfaces.

of Figure 25 shows a depth slice through a velocity cube at a depth of 1220 meters;
the right side shows the corresponding migrated image slice. The salt-sediment inter-
face and the semicircular fault cutting through the salt body are imaged with high
resolution. Figure 26 compares the velocity model on the left with the corresponding
migrated line on the right, for a different slice. The sediment images are imaged at the
correct locations, together with the salt body borders. The areas with lesser quality
are under the salt, most probably as a result of multiple reflected arrivals at this spot
from the water bottom and intrasalt reflections, and close to the left side of the top
of the salt, most probably because of the use of first arrivals in the Fast Marching
Method. For further results and discussion of other issues, see [32] and [35].

6.4. An Optimal Algorithm for Computing Geodesic Paths on Surfaces. Sup-
pose we try to compute the shortest path between two points on a given surface. This
minimal geodesic can be obtained from a problem in front propagation as follows.
As discussed in [13], one uses the triangulated Fast Marching Method to solve the
straightforward Eikonal equation |∇T | = 1 on a triangulated approximation to the
manifold. One can then backtrace on the surface itself, solving the ordinary differen-
tial equation

dX(s)
ds

= −∇T,

where X(s) traces out the geodesic path. We use a second-order Heun’s integration
method on the triangulated surface with a switch to a first-order scheme at sonic
points in the gradient.

Here, we show two examples taken from [13]. Figure 27 presents a perspective view
of the triangulation and shortest paths for two surfaces. The left side of the figure
shows shortest paths on regular triangulation of the surface given by the function
z(x, y) = 0.45 sin(2πx) sin(2πy) on [0, 1] × [0, 1], for a grid size of 50 × 50. The
minimal geodesics are painted on the triangulated surface and projected to the x− y
plane. The right side of the figure gives a polyhedron example, in which a different
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Full view of shortest paths Cutaway view

Fig. 28 Shortest paths on a bead (a genus-1 two-dimensional manifold).

speed function F was assigned to each side, causing a Snell’s law effect along the
edges. The speed F is 2 at the close side with the start point, 1 at the second top
side, and 4 at the side of the destination point.

Next, we show a computation that illustrates the performance on manifolds with
an underlying nonacute (obtuse) triangulation. Figure 28 shows the computation
of minimal geodesics on a torus, in which some shortest paths in fact cut through
the middle. The equidistance curves are shown, as well as the shortest paths. We
note that the computational complexity is unchanged; we have given an O(N logN)
algorithm for constructing geodesic paths on triangulated surfaces.7 For details,
see [13].

6.5. Optimal Path Planning.

6.5.1. Statement of Problem. The application of Fast Marching Methods to
problems in path planning was first developed in [12]; here we summarize some of
those results.

Given a cost function F (x1, x2, . . . , xn), and a starting point A in Rn, one goal
in path planning is to construct the path γ(τ) : [0,∞)→ Rn from A to any point B
in Rn that minimizes the integral∫ B=γ(L)

A=γ(0)
F (γ(τ))dτ,(23)

where τ is the arclength parameterization of γ; namely, |γτ | = 1, and L is the total
length of γ.

More specifically, in two dimensions, suppose we are given the cost function
F (x, y) and a starting point A. Let T (x, y) be the minimal cost required to travel
from A to the point (x, y), that is,

T (x, y) = min
γ

∫ (x,y)

A

F (γ(τ))dτ,(24)

7It is important to be clear about what is being claimed. We are not finding the exact shortest
path for a given triangulation of a surface. The solution path using the above algorithm is the
shortest path within an error that depends on the size of the triangulation. It is an approximate
shortest path, constructed in O(N logN) steps, where N is the number of triangles used to tessellate
the surface. As the triangulation is refined, this path converges to the exact shortest path.
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with |γτ | = 1. The level set T (x, y) = C is the set of all points in R2 that can be
reached with minimal cost C, and the minimal cost paths are orthogonal to the level
curves; hence we have

|∇T | = F (x, y).(25)

Obviously, the Fast Marching Method can be used to solve this Eikonal equation to
produce T (x, y) in all of R2. Then, given a point B in R2, explicit construction of
the shortest path comes through backpropagation from B to A via the solution of the
ordinary differential equation

Xt = −∇T given X(0) = B,(26)

until we reach the starting point A.

6.5.2. Results. For an illustration of these techniques, consider the problem of
navigation with constraints and rotation. Instead of a robot as a single point, we
imagine a two-dimensional rectangle with a given width and length. Thus, the initial
position A of the robot in configuration space is specified by the position of the center
of the rectangle, plus an angle θ between 0 and 2π. The final configuration B is
similarly specified, and the goal is to construct the optimal path from A to B.

In the absence of obstacles, a completely straightforward application of the Fast
Marching Method is possible: one discretizes the configuration space into a three-
dimensional grid consisting of a discretized mesh for both R2 and θ employing periodic
boundary conditions for θ. Thus, we solve the Eikonal equation[

u2
x + u2

y + u2
θ

]1/2
= 1.(27)

In the presence of obstacles, we take the following approach; see [14]. Rather than
maneuver an oddly shaped robot, we instead consider the robot as a point, and, for
every discretized angle θi, alter the shape of the obstacles corresponding to that an-
gle. To do this for all obstacles at each angle requires morphological shape operations
consisting of dilations and translations; these too may be done using the Fast March-
ing Method; see [12]. In Figure 29 we show several examples of a two-dimensional
robot with rotational angle navigating in two-dimensional space around obstacles. For
further details about applications of Fast Marching Methods to path planning and
robotic navigation, see [12] and [31].

6.6. Visibility Calculations and Reflected Bounces. Our last application is the
evaluation of visibility. By visibility, we mean the determination of whether two points
in a domain have an unobstructed straight-line view of each other. Such issues are
important in several areas:

• Semiconductor manufacturing: One factor that influences the etching and
deposition process is whether a point on an evolving profile is visible from
other points on the surface. As an example, imagine an etching beam that
dislodges particles as it strikes the surface; these dislodged particles leave the
interface and are then redeposited somewhere else on the profile. Thus, the
total flux of particles into any point on the front depends on computing the
amount received from all other points on the front. There are various models
that describe how these dislodged particles are ejected, including specular
reflection (the angle of incidence equals the angle of refraction) and lumi-
nescent reflection (the angle at which a dislodged particle leaves the surface
is uniformly distributed among all possible angles). In most cases, visibility
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Fig. 29 Two-dimensional navigation around obstacles with rotation.

comes into play; the amount of material received at a point from dislodged
particles emanating from another point on the surface is zero if there is no
direct line of sight between the two points, meaning that some other part of
the profile blocks the incoming flux.
• Ray tracing and scene rendering: In computer graphics, ray tracing is often

used to accurately render a complex scene. A scene can have many obstacles,
corners, and occluded objects; the fundamental algorithm requires tracing a
beam from a source to a final location, determining which points are directly
visible.
• Shadowing: In other computer graphics and optics problems, given a source

location, one wants to quickly locate the set of all points shadowed by a given
collection of obstacles.

Fast Marching Methods can aid in computing the visibility in these situations.
Specifically, we give algorithms for the following:
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(visible)

(not visible)
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φ>0
φ<0

Can A see B? Using implicit representation test
(a) (b)

Fig. 30 Visibility test between A and B.

1. Profile visibility: Given a profile (that is, a curve in two dimensions or surface
in three dimensions), we can determine whether the straight-line path between
two points is blocked by the profile itself.

2. Scene visibility: Given a domain filled with obstacles in either two or three
dimensions, we can determine if two points in the domain can see each other
directly.

3. Shadowing: Given a source and a domain filled with obstacles, we can provide
a fast algorithm to determine those points that are shadowed by the obstacles.

We now discuss these algorithms in some detail.

6.6.1. Profile Visibility. Suppose we are given a profile and two points A and B;
we wish to determine if there is a direct line of sight between A and B (see Figure
30a).

A brute force approach, while easy to program, is costly. Suppose that there are
N points on the curve. By checking all segments between the two points, it costs
O(N) to determine if A can see B. Thus, checking whether each pair of points is
mutually visible is O(N3). Of course, clever programming can make this much faster,
including quadtree representations and judicious choices of how to proceed through
the list of segments.

A fast algorithm comes from exploiting an implicit representation of the interface.
Given the profile, we use the Fast Marching Method to determine the signed distance
T from the profile. Then we need only check to see if T (x) > 0 for all points x on the
segment between A and B. If T is always positive, then the two points are visible,
since the front cannot intersect the segment. We can perform this test of whether
T (x) > 0 along the segment as follows. First, pick the midpoint of the segment
and evaluate T (x) by interpolation from the underlying grid; the value indicates the
distance to the closest point on the front. One can now move that distance along the
line segment in both directions and then query again. Repeating this process until one
either reaches both A and B (in which case the two points were mutually visible) or
reaches a point where φ < 0 (in which case the two points were not mutually visible)
terminates the algorithm; see Figure 30b.

6.6.2. Scene Visibility. Now imagine a domain filled with obstacles, as in Figure
31. The goal is to determine whether or not two points A and B are visible to each
other.

We may proceed in a manner similar to the above and use the Fast Marching
Method to determine scene visibility. First, we compute the distance function T (x, y)
from all the obstacles. We then can test the visibility of any two points in the scene
by the above algorithm, which queries whether T (x, y) < 0 at any point on the line
connecting A and B.
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A

B

Fig. 31 Scene visibility.

How does this approach compare to a more direct algorithm which, given the line
between two points, checks to see if it intersects any of the obstacles? The answer
depends on the relative density of obstacles in the domain. If a large fraction of the
domain is filled with obstacles, then the Fast Marching Method computes the distance
function in the empty spaces quickly. On the other hand, the direct testing approach
of checking all obstacles against a given segment connecting two points can be time
consuming. In this case, the Fast Marching approach is viable. Conversely, if there
are only a few, small obstacles in the domain, then the price of gridding the domain to
construct the solution to the Eikonal equation may not be competitive with a direct
testing approach.

6.6.3. Shadowing. Finally, we give a fast algorithm for approximately comput-
ing the shadow region behind obstacles created from a point source. Thus, given a
collection of obstacles, we wish to find all points in a domain directly visible from a
source at A. For a small number of obstacles, there are standard computer graphics
techniques that typically perform comparisons with each obstacle. As the number of
obstacles increases, so can the complexity of such algorithms.

A different approach is as follows. Given a source at A, imagine the solution to
two separate Eikonal equations:

|∇Tno-obstacles| = 1, |∇Tobstacles| = F (x, y),(28)

where the right-hand side in the obstacles case is set to ∞ inside the obstacles and
1 otherwise. We solve each of these problems separately, using the Fast Marching
Method, and then compare the solutions. If the obstacle blocks the source A from the
point (x, y), then the first arrival time should be larger in the obstacles case. Thus,
if Tno-obstacles(x, y) = Tobstacles(x, y), then the point (x, y) is visible from the source; if,
on the other hand, Tno-obstacles(x, y) < Tobstacles(x, y), then the point is not visible. In
practice, due to numerical error in the scheme, we need to use a threshold on the
difference; that is, we check that

Tno-obstacles(x, y) + threshold < Tobstacles(x, y).

The threshold is chosen as a function of the mesh size h. An equally effective approach
comes from comparing the results of running the method with grid size h and h/2.
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Fig. 32 Shadow zone created by obstacles.

Fig. 33 Shadow zone for two sources.

We note two advantages with this approach. First, the computational speed is
independent of the number of obstacles, and second, the technique is unchanged in
three dimensions and higher. In Figure 32, we show the shadow zone created around
six obstacles for two different placements of the sources.

The technique may be easily extended to multiple sources by running each source
separately and then comparing the separate arrival times (see Figure 33). For further
discussion of visibility and related issues, see [31].

7. Additional Results. The range of applications for Fast Marching Methods is
large and currently a field of active interest. These methods are in use in such areas
as computer graphics, medical imaging, antenna and wave problems, crack dynamics,
and flame propagation. They provide very fast ways to compute extension velocities
that are critical to the efficient implementation of level set methods, and have found
their way into morphological operations, Boolean operations on shapes, and implicit
surface CAD/CAM descriptors. We refer the interested reader to [31] for a much
more detailed discussion, as well as many additional applications.
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